	UČN	NAČRT PR	EDMETA / COL	JRSE SYLLAE	BUS			
Predmet:	Optimizacijs	Optimizacijske metode v inženirstvu						
Course title:	Optimization	Optimization Methods in Engineering						
Študijski program in stopnja Study programme and level			Študijska smer Study field		Letnik Academic year	Semester Semester		
v str	nnologije in sister ojništvu - stopnja	ni	/		1./2.	zimski/letni		
systems i	technologies and in mechanical ing - 3 rd cycle		/		first/second	winter/sum mer		
Vrsta predme	ta / Course type			izbirni/ele	ctive			
Univerzitetna koda predmeta / University course code: /								
Predavanja	Seminar	Vaje	Laboratorijs	Druge obli	Samost. de	lo		
Lectures	Seminar	Tutorial	ke vaje work	študija	Individ. work	ECTS		
Lectures 10	Seminar	-	•	_	Individ.	10		
10 Nosilec predm Jeziki /	neta / Lecturer: Preda	Tutorial 30 prof. dr.	work	_	Individ. work			
10 Nosilec predm	neta / Lecturer: Preda Le	prof. dr.	work 10 . Carlo Poloni	_	Individ. work			
10 Nosilec predm Jeziki / Languages:	neta / Lecturer: Preda Le Vaje / T	prof. dr. avanja / an ectures: utorial: ar	work 10 Carlo Poloni gleški/english ngleški/english	študija /	Individ. work			

/sebina:	Content (Syllabus outline):
	This course addresses the use of multi-objective
	optimization methods in engineering design.
	After a general introduction to the multi-
	objective optimization principles, the students
	will be exposed to design of experiment
	techniques, state-of-the-art optimization
	algorithms, assessment methods and the use of
	meta-models for optimization. Advanced
	aspects like multi-criteria decision making and
	robustness will also be considered. The use of a
	state-of-the-art optimization software tool will
	provide students with concrete hands-on
	experience. The course will be complemented
	with successful examples of real industrial
	applications.
	Topics covered will include:
	General introduction: multi-objective
	optimization problems, Pareto front
	Design of Experiments
	Algorithms for multi-objective
	optimization: genetic algorithms,
	simulated annealing
	Response Surface Models and its use for ontimization
	optimization • Assessment methods
	Robustness Noulti gritaria degician malina
	Multi-criteria decision making
	Industrial applications, practical applications
	considerations, implications.
ni literatura in viri / R	eadings:
ldberg, D. E. <i>Genetic Al</i>	lgorithms in Search, Optimization, and Machine Learning.
S. S. (1996) Engineer	ing Optimization: Theory and Practice, John Wiley & Sons.
azzuti, M. (2012) <i>Optil</i>	mization Methods: From Theory to Design Scientific and
echnological Aspects in I	Mechanics, Springer Science & Business Media.

This course will provide the students with the ability to apply multi-objective optimization techniques in engineering design problems. Upon completion of the course, the students will: [1] understand the principles of multi-objective optimization, [2] be able to select the most appropriate optimization method to apply depending on the problem, [3] get a good knowledge of current applications of optimization techniques in industry and
[4] have a practical experience with a state-of-the-art software tool for multi-objective optimization.
Intended learning outcomes:
 understand the concepts, phenomena and processes, to find and use appropriate scientific literature, ability to apply theoretical knowledge in practice, to find the interconnection in simple and complex technological processes, be able critically evaluate the weak points in the process, to understand links to related learning courses.
Learning and teaching methods:

- predavanja,
- računske in laboratorijske vaje s praktičnimi primeri iz industrije.
- lectures,
- computational and laboratory exercises with practical examples from the industry.

Delež (v %) /

Načini ocenjevanja:	Weight (in %)	Assessment:	
Seminarska naloga	40%	Project work	
Ustni izpit	60%	Oral examination	