| | UČN | NAČRT PR | EDMETA / COL | JRSE SYLLAE | BUS | | | | |---|--|---|---|--------------|----------------------------|----------------------|--|--| | Predmet: | Optimizacijs | Optimizacijske metode v inženirstvu | | | | | | | | Course title: | Optimization | Optimization Methods in Engineering | | | | | | | | Študijski program in stopnja
Study programme and level | | | Študijska smer
Study field | | Letnik
Academic
year | Semester
Semester | | | | v str | nnologije in sister
ojništvu -
stopnja | ni | / | | 1./2. | zimski/letni | | | | systems i | technologies and
in mechanical
ing - 3 rd cycle | | / | | first/second | winter/sum
mer | | | | Vrsta predme | ta / Course type | | | izbirni/ele | ctive | | | | | Univerzitetna koda predmeta / University course code: / | | | | | | | | | | Predavanja | Seminar | Vaje | Laboratorijs | Druge obli | Samost. de | lo | | | | Lectures | Seminar | Tutorial | ke vaje
work | študija | Individ.
work | ECTS | | | | Lectures 10 | Seminar | - | • | _ | Individ. | 10 | | | | 10 Nosilec predm Jeziki / | neta / Lecturer:
Preda | Tutorial 30 prof. dr. | work | _ | Individ.
work | | | | | 10 Nosilec predm | neta / Lecturer:
Preda
Le | prof. dr. | work 10 . Carlo Poloni | _ | Individ.
work | | | | | 10 Nosilec predm Jeziki / Languages: | neta / Lecturer:
Preda
Le
Vaje / T | prof. dr. avanja / an ectures: utorial: ar | work 10 Carlo Poloni gleški/english ngleški/english | študija
/ | Individ.
work | | | | | /sebina: | Content (Syllabus outline): | |---------------------------------|---| | | This course addresses the use of multi-objective | | | optimization methods in engineering design. | | | After a general introduction to the multi- | | | objective optimization principles, the students | | | will be exposed to design of experiment | | | techniques, state-of-the-art optimization | | | algorithms, assessment methods and the use of | | | meta-models for optimization. Advanced | | | aspects like multi-criteria decision making and | | | robustness will also be considered. The use of a | | | state-of-the-art optimization software tool will | | | provide students with concrete hands-on | | | experience. The course will be complemented | | | with successful examples of real industrial | | | applications. | | | Topics covered will include: | | | General introduction: multi-objective | | | optimization problems, Pareto front | | | Design of Experiments | | | Algorithms for multi-objective | | | optimization: genetic algorithms, | | | simulated annealing | | | Response Surface Models and its use for ontimization | | | optimization • Assessment methods | | | | | | Robustness Noulti gritaria degician malina | | | Multi-criteria decision making | | | Industrial applications, practical applications | | | considerations, implications. | | | | | ni literatura in viri / R | eadings: | | | | | ldberg, D. E. <i>Genetic Al</i> | lgorithms in Search, Optimization, and Machine Learning. | | S. S. (1996) Engineer | ing Optimization: Theory and Practice, John Wiley & Sons. | | azzuti, M. (2012) <i>Optil</i> | mization Methods: From Theory to Design Scientific and | | echnological Aspects in I | Mechanics, Springer Science & Business Media. | | | | | This course will provide the students with the ability to apply multi-objective optimization techniques in engineering design problems. Upon completion of the course, the students will: [1] understand the principles of multi-objective optimization, [2] be able to select the most appropriate optimization method to apply depending on the problem, [3] get a good knowledge of current applications of optimization techniques in industry and | |---| | [4] have a practical experience with a state-of-the-art software tool for multi-objective optimization. | | Intended learning outcomes: | | understand the concepts, phenomena and processes, to find and use appropriate scientific literature, ability to apply theoretical knowledge in practice, to find the interconnection in simple and complex technological processes, be able critically evaluate the weak points in the process, to understand links to related learning courses. | | Learning and teaching methods: | | | - predavanja, - računske in laboratorijske vaje s praktičnimi primeri iz industrije. - lectures, - computational and laboratory exercises with practical examples from the industry. Delež (v %) / | Načini ocenjevanja: | Weight (in %) | Assessment: | | |---------------------|---------------|------------------|--| | Seminarska naloga | 40% | Project work | | | Ustni izpit | 60% | Oral examination | | | | | | | | | | | |